Using MATLAB, plot the magnitude frequency response and the phase response for the filter of Problem 9.54. | Numerade (2024)

`); let searchUrl = `/search/`; history.forEach((elem) => { prevsearch.find('#prevsearch-options').append(`

${elem}

`); }); } $('#search-pretype-options').empty(); $('#search-pretype-options').append(prevsearch); let prevbooks = $(false); [ {title:"Recently Opened Textbooks", books:previous_books}, {title:"Recommended Textbooks", books:recommended_books} ].forEach((book_segment) => { if (Array.isArray(book_segment.books) && book_segment.books.length>0 && nsegments<2) { nsegments+=1; prevbooks = $(`

  • ${book_segment.title}
  • `); let searchUrl = "/books/xxx/"; book_segment.books.forEach((elem) => { prevbooks.find('#prevbooks-options'+nsegments.toString()).append(`

    ${elem.title} ${ordinal(elem.edition)} ${elem.author}

    `); }); } $('#search-pretype-options').append(prevbooks); }); } function anon_pretype() { let prebooks = null; try { prebooks = JSON.parse(localStorage.getItem('PRETYPE_BOOKS_ANON')); }catch(e) {} if ('previous_books' in prebooks && 'recommended_books' in prebooks) { previous_books = prebooks.previous_books; recommended_books = prebooks.recommended_books; if (typeof PREVBOOKS !== 'undefined' && Array.isArray(PREVBOOKS)) { new_prevbooks = PREVBOOKS; previous_books.forEach(elem => { for (let i = 0; i < new_prevbooks.length; i++) { if (elem.id == new_prevbooks[i].id) { return; } } new_prevbooks.push(elem); }); new_prevbooks = new_prevbooks.slice(0,3); previous_books = new_prevbooks; } if (typeof RECBOOKS !== 'undefined' && Array.isArray(RECBOOKS)) { new_recbooks = RECBOOKS; for (let j = 0; j < new_recbooks.length; j++) { new_recbooks[j].viewed_at = new Date(); } let insert = true; for (let i=0; i < recommended_books.length; i++){ for (let j = 0; j < new_recbooks.length; j++) { if (recommended_books[i].id == new_recbooks[j].id) { insert = false; } } if (insert){ new_recbooks.push(recommended_books[i]); } } new_recbooks.sort((a,b)=>{ adate = new Date(2000, 0, 1); bdate = new Date(2000, 0, 1); if ('viewed_at' in a) {adate = new Date(a.viewed_at);} if ('viewed_at' in b) {bdate = new Date(b.viewed_at);} // 100000000: instead of just erasing the suggestions from previous week, // we just move them to the back of the queue acurweek = ((new Date()).getDate()-adate.getDate()>7)?0:100000000; bcurweek = ((new Date()).getDate()-bdate.getDate()>7)?0:100000000; aviews = 0; bviews = 0; if ('views' in a) {aviews = acurweek+a.views;} if ('views' in b) {bviews = bcurweek+b.views;} return bviews - aviews; }); new_recbooks = new_recbooks.slice(0,3); recommended_books = new_recbooks; } localStorage.setItem('PRETYPE_BOOKS_ANON', JSON.stringify({ previous_books: previous_books, recommended_books: recommended_books })); build_popup(); } } var whiletyping_search_object = null; var whiletyping_search = { books: [], curriculum: [], topics: [] } var single_whiletyping_ajax_promise = null; var whiletyping_database_initial_burst = 0; //number of consecutive calls, after 3 we start the 1 per 5 min calls function get_whiletyping_database() { //gets the database from the server. // 1. by validating against a local database value we confirm that the framework is working and // reduce the ammount of continuous calls produced by errors to 1 per 5 minutes. return localforage.getItem('whiletyping_last_attempt').then(function(value) { if ( value==null || (new Date()) - (new Date(value)) > 1000*60*5 || (whiletyping_database_initial_burst < 3) ) { localforage.setItem('whiletyping_last_attempt', (new Date()).getTime()); // 2. Make an ajax call to the server and get the search database. let databaseUrl = `/search/whiletype_database/`; let resp = single_whiletyping_ajax_promise; if (resp === null) { whiletyping_database_initial_burst = whiletyping_database_initial_burst + 1; single_whiletyping_ajax_promise = resp = new Promise((resolve, reject) => { $.ajax({ url: databaseUrl, type: 'POST', data:{csrfmiddlewaretoken: "ccoY37k86Xroc2zxLYvC37cbmE8t1mhY7P0pUWTM2UHNOMsxI8NLeMpGkbhm5UAQ"}, success: function (data) { // 3. verify that the elements of the database exist and are arrays if ( ('books' in data) && ('curriculum' in data) && ('topics' in data) && Array.isArray(data.books) && Array.isArray(data.curriculum) && Array.isArray(data.topics)) { localforage.setItem('whiletyping_last_success', (new Date()).getTime()); localforage.setItem('whiletyping_database', data); resolve(data); } }, error: function (error) { console.log(error); resolve(null); }, complete: function (data) { single_whiletyping_ajax_promise = null; } }) }); } return resp; } return Promise.resolve(null); }).catch(function(err) { console.log(err); return Promise.resolve(null); }); } function get_whiletyping_search_object() { // gets the fuse objects that will be in charge of the search if (whiletyping_search_object){ return Promise.resolve(whiletyping_search_object); } database_promise = localforage.getItem('whiletyping_database').then(function(database) { return localforage.getItem('whiletyping_last_success').then(function(last_success) { if (database==null || (new Date()) - (new Date(last_success)) > 1000*60*60*24*30 || (new Date('2023-04-25T00:00:00')) - (new Date(last_success)) > 0) { // New database update return get_whiletyping_database().then(function(new_database) { if (new_database) { database = new_database; } return database; }); } else { return Promise.resolve(database); } }); }); return database_promise.then(function(database) { if (database) { const options = { isCaseSensitive: false, includeScore: true, shouldSort: true, // includeMatches: false, // findAllMatches: false, // minMatchCharLength: 1, // location: 0, threshold: 0.2, // distance: 100, // useExtendedSearch: false, ignoreLocation: true, // ignoreFieldNorm: false, // fieldNormWeight: 1, keys: [ "title" ] }; let curriculum_index={}; let topics_index={}; database.curriculum.forEach(c => curriculum_index[c.id]=c); database.topics.forEach(t => topics_index[t.id]=t); for (j=0; j

    Solutions
  • Textbooks
  • `); } function build_solutions() { if (Array.isArray(solution_search_result)) { const viewAllHTML = userSubscribed ? `View All` : ''; var solutions_section = $(`
  • Solutions ${viewAllHTML}
  • `); let questionUrl = "/questions/xxx/"; let askUrl = "/ask/question/xxx/"; solution_search_result.forEach((elem) => { let url = ('course' in elem)?askUrl:questionUrl; let solution_type = ('course' in elem)?'ask':'question'; let subtitle = ('course' in elem)?(elem.course??""):(elem.book ?? "")+"    "+(elem.chapter?"Chapter "+elem.chapter:""); solutions_section.find('#whiletyping-solutions').append(` ${elem.text} ${subtitle} `); }); $('#search-solution-options').empty(); if (Array.isArray(solution_search_result) && solution_search_result.length>0){ $('#search-solution-options').append(solutions_section); } MathJax.typesetPromise([document.getElementById('search-solution-options')]); } } function build_textbooks() { $('#search-pretype-options').empty(); $('#search-pretype-options').append($('#search-solution-options').html()); if (Array.isArray(textbook_search_result)) { var books_section = $(`
  • Textbooks View All
  • `); let searchUrl = "/books/xxx/"; textbook_search_result.forEach((elem) => { books_section.find('#whiletyping-books').append(` ${elem.title} ${ordinal(elem.edition)} ${elem.author} `); }); } if (Array.isArray(textbook_search_result) && textbook_search_result.length>0){ $('#search-pretype-options').append(books_section); } } function build_popup(first_time = false) { if ($('#search-text').val()=='') { build_pretype(); } else { solution_and_textbook_search(); } } var search_text_out = true; var search_popup_out = true; const is_login = false; const user_hash = null; function pretype_setup() { $('#search-text').focusin(function() { $('#search-popup').addClass('show'); resize_popup(); search_text_out = false; }); $( window ).resize(function() { resize_popup(); }); $('#search-text').focusout(() => { search_text_out = true; if (search_text_out && search_popup_out) { $('#search-popup').removeClass('show'); } }); $('#search-popup').mouseenter(() => { search_popup_out = false; }); $('#search-popup').mouseleave(() => { search_popup_out = true; if (search_text_out && search_popup_out) { $('#search-popup').removeClass('show'); } }); $('#search-text').on("keyup", delay(() => { build_popup(); }, 200)); build_popup(true); let prevbookUrl = `/search/pretype_books/`; let prebooks = null; try { prebooks = JSON.parse(localStorage.getItem('PRETYPE_BOOKS_'+(is_login?user_hash:'ANON'))); }catch(e) {} if (prebooks && 'previous_books' in prebooks && 'recommended_books' in prebooks) { if (is_login) { previous_books = prebooks.previous_books; recommended_books = prebooks.recommended_books; if (prebooks.time && new Date().getTime()-prebooks.time<1000*60*60*6) { build_popup(); return; } } else { anon_pretype(); return; } } $.ajax({ url: prevbookUrl, method: 'POST', data:{csrfmiddlewaretoken: "ccoY37k86Xroc2zxLYvC37cbmE8t1mhY7P0pUWTM2UHNOMsxI8NLeMpGkbhm5UAQ"}, success: function(response){ previous_books = response.previous_books; recommended_books = response.recommended_books; if (is_login) { localStorage.setItem('PRETYPE_BOOKS_'+user_hash, JSON.stringify({ previous_books: previous_books, recommended_books: recommended_books, time: new Date().getTime() })); } build_popup(); }, error: function(response){ console.log(response); } }); } $( document ).ready(pretype_setup); $( document ).ready(function(){ $('#search-popup').on('click', '.search-view-item', function(e) { e.preventDefault(); let autoCompleteSearchViewUrl = `/search/autocomplete_search_view/`; let objectUrl = $(this).attr('href'); let selectedId = $(this).data('objid'); let searchResults = []; $("#whiletyping-solutions").find("a").each(function() { let is_selected = selectedId === $(this).data('objid'); searchResults.push({ objectId: $(this).data('objid'), contentType: $(this).data('contenttype'), category: $(this).data('category'), selected: is_selected }); }); $("#whiletyping-books").find("a").each(function() { let is_selected = selectedId === $(this).data('objid'); searchResults.push({ objectId: $(this).data('objid'), contentType: $(this).data('contenttype'), category: $(this).data('category'), selected: is_selected }); }); $.ajax({ url: autoCompleteSearchViewUrl, method: 'POST', data:{ csrfmiddlewaretoken: "ccoY37k86Xroc2zxLYvC37cbmE8t1mhY7P0pUWTM2UHNOMsxI8NLeMpGkbhm5UAQ", query: $('#search-text').val(), searchObjects: JSON.stringify(searchResults) }, dataType: 'json', complete: function(data){ window.location.href = objectUrl; } }); }); });
    Using MATLAB, plot the magnitude frequency response and the phase response for the filter of Problem 9.54. | Numerade (2024)

    FAQs

    How to plot the frequency response of a filter in Matlab? ›

    [ H , f ] = freqz( obj , ind ) returns the frequency response of filters with indices corresponding to the elements in vector ind . [ H , f ] = freqz(___,N= n ) returns the N-point complex frequency response. freqz(___) with no output arguments plots the frequency response of the filter bank.

    How do you plot magnitude frequency response? ›

    It is customary to plot the magnitude of the frequency response function on the log scale as |G(jω)|dB=20log10|G(jω)|. The magnitude of the loop gain is given in dB as: |KGH(jω)|dB=20logK+∑mi=120log|1+jωzi|−(20n0)logω−∑n1i=120log|1+jωpi|−∑n2i=120log|1−ω2ω2n,i+j2ζiωωn,i|.

    How do you find the frequency response of a signal in Matlab? ›

    [ h , f ] = freqz(___, n , fs ) returns the frequency response vector h and the corresponding physical frequency vector f for a digital filter designed to filter signals sampled at a rate fs . [ h , f ] = freqz(___, n ,'whole', fs ) returns the frequency vector at n points ranging between 0 and fs .

    How do you find the magnitude and phase response? ›

    A geometric way to obtain approximate magnitude and phase frequency responses is using the effects of zeros and poles on the frequency response of an LTI system. G ( s ) | s = j Ω 0 = K j Ω 0 − z j Ω 0 − p = K Z → ( Ω 0 ) P → ( Ω 0 ) .

    What is frequency response model in MATLAB? ›

    A frequency-response model is the frequency response of a linear system evaluated over a range of frequency values. The model is represented by an idfrd model object that stores the frequency response, sample time, and input-output channel information.

    How does the filter function work in MATLAB? ›

    In MATLAB®, the filter function filters a vector of data x according to the following difference equation, which describes a tapped delay-line filter. In this equation, a and b are vectors of coefficients of the filter, Na is the feedback filter order, and Nb is the feedforward filter order.

    How do you measure frequency response filter? ›

    You can make that measurement with an oscilloscope and a square wave with a fast edge. Frequency response measurements require an input with a constant amplitude over the frequency range of the measurement. The three types of signals with a flat frequency spectrum are swept sine, impulse, and broadband noise.

    What is the magnitude plot and phase plot? ›

    For a constant term, the magnitude plot is a straight line. The phase plot is also a straight line, either at 0° (for a positive constant) or ±180° (for a negative constant).

    What is the difference between magnitude response and phase response? ›

    The magnitude describes the strength of each frequency in the signal. The phase describes the sine/cosine phase of each frequency. The phase can also be thought of as the relative proportion of sines and cosines in the signal (i.e., a phase of zero contains only cosines and a phase of 90 degrees contains only sines).

    What is the phase response of a filter? ›

    In signal processing, phase response is the relationship between the phase of a sinusoidal input and the output signal passing through any device that accepts input and produces an output signal, such as an amplifier or a filter.

    How to plot frequency response in MATLAB Simulink? ›

    If you have a linear representation of the system in the form of a transfer function or state-space model, you can plot the frequency response using one of the three plots: a Bode plot, Nyquist plot, or a Nichols chart.

    What is Freqz frequency response in MATLAB? ›

    The frequency response is evaluated at 8192 points equally spaced around the upper half of the unit circle. [ h , w ] = freqz( sysobj , n ) returns the complex frequency response of the filter System object and the corresponding frequencies at n points equally spaced around the upper half of the unit circle.

    What is the frequency response of a filter? ›

    The frequency response of a filter is generally represented using a Bode plot, and the filter is characterized by its cutoff frequency and rate of frequency rolloff. In all cases, at the cutoff frequency, the filter attenuates the input power by half or 3 dB.

    How to find magnitude and phase of complex number in matlab? ›

    [ mag , angle , validOut ] = magAngle( X , validIn ) converts a scalar or vector of complex values X into their component magnitude and phase angles.

    How to calculate phase response in Matlab? ›

    phi = phasez(___, f , fs ) returns the phase response vector phi evaluated at the physical frequencies supplied in f . This syntax can include any combination of input arguments from the previous syntaxes. phi = phasez(___, w ) returns the unwrapped phase response in radians at frequencies specified in w .

    How to plot response surface in matlab? ›

    To create a response surface plot, you have to provide Z as a matrix. Specifically, if two vector arguments X & Y defined such that length(X) = n and length(Y) = m then, size(Z) should be [m,n]. In order to plot the vertices of the surface patches as the triples (X(j), Y(i), Z(i,j)).

    What is magnitude and phase plot? ›

    The magnitude describes the strength of each frequency in the signal. The phase describes the sine/cosine phase of each frequency. The phase can also be thought of as the relative proportion of sines and cosines in the signal (i.e., a phase of zero contains only cosines and a phase of 90 degrees contains only sines).

    References

    Top Articles
    Latest Posts
    Article information

    Author: Annamae Dooley

    Last Updated:

    Views: 5555

    Rating: 4.4 / 5 (45 voted)

    Reviews: 84% of readers found this page helpful

    Author information

    Name: Annamae Dooley

    Birthday: 2001-07-26

    Address: 9687 Tambra Meadow, Bradleyhaven, TN 53219

    Phone: +9316045904039

    Job: Future Coordinator

    Hobby: Archery, Couponing, Poi, Kite flying, Knitting, Rappelling, Baseball

    Introduction: My name is Annamae Dooley, I am a witty, quaint, lovely, clever, rich, sparkling, powerful person who loves writing and wants to share my knowledge and understanding with you.